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Abstract

During the fabrication processes of particle-reinforced metal-matrix composites, thermal residual stresses are nor-
mally developed due to the difference of the coefficients of thermal expansion between the matrix and the reinforcement.
The effect of thermal residual stresses is analytically investigated on the elastoplastic behavior of the composites.
Micromechanical stress and strain fields are calculated due to the combination of applied external loads and prescribed
thermal mismatch eigenstrains. Ensemble-volume averaging procedures are then employed to derive the effective yield
function of the composites. It is shown that the residual stresses result in a combined kinematic hardening and isotropic
hardening effect. Comparisons between the analytical predictions and experimental data are performed to illustrate the
capability of the proposed model.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Because of the improved stiffness and strength with lightweight compared with conventional metallic
alloys, metal-matrix composites (MMCs) have the great potential to be applied in the aerospace, defense,
and automotive industries. The mechanical properties of MMCs generally reflect the combination of those
of the matrices and the reinforcements. Reinforcements may be continuous in the form of long fibers or
discontinuous in the form of particulates, short fibers or whiskers. Particle-reinforced MMCs (PRMMCs)
are less expensive to fabricate. They can be shaped by standard metallurgical processes such as forging,
rolling, and extrusion.

Internal residual stresses in composites are the ones which remain stationary and at equilibrium with
their surroundings. The mechanical performance of materials may be significantly affected. On the other
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hand, the existence of internal residual stresses may be beneficial if designed deliberately (Withers and
Bhadeshia, 2001a,b). Therefore, it is important to quantitatively understand how residual stresses influence
the mechanical responses of PRMMCs under external loading. During the fabrication and subsequent heat
treatment processes, PRMMC:s initially behave in a stress-free state at the solution treatment temperature
and then develop significant thermal residual stresses upon cooling to the room temperature. This is due to
the difference of coefficient of thermal expansion (CTE) between the matrix (e.g., CTE of Al
o = 21.5 x 107%/°C) and the reinforcement (e.g., CTE of SiC: o; = 3.8 x 107%/°C). Since the CTE of the
metallic matrix is greater than that of the ceramic particles, the matrix shrinks tight around the particles,
resulting in the internal tensile stresses in the matrix and compressive stresses in the particles. The local
plastic deformation may occur if the residual stresses exceed the yield strength of the matrix during the
cooling process.

Various models have been developed to tackle the thermal residual stresses and their effect on the
overall (effective) mechanical performance of unidirectionally aligned PRMMC s, either analytically
(Arsenault and Taya, 1987; Withers et al., 1989; Dunn and Taya, 1994; Ramakrishnan, 1996; Hu and
Weng, 1998; Jiang et al., 1998) or computationally (Povirk et al., 1991; Levy and Papazian, 1991; Zahl
and McMeeking, 1991; Shi et al., 1992; Davis and Allison, 1993; Dutta et al., 1993; Ho and Saigal,
1994; Jain et al., 1994; Meijer et al., 2000; Teixeira-Dias and Menezes, 2001; Bruzzi et al., 2001). It is
noted that both analytical and numerical treatments have their advantages and disadvantages (Dunn
and Ledbetter, 1997). In general, analytical micromechanical approaches consider the analysis of a
representative volume element (RVE) in which the reinforcement geometry is idealized for the ease of
mathematical treatment. For example, reinforcing particles, short fibers, or whiskers are usually
modeled by spheroids so that the celebrated Eshelby’s equivalent inclusion theory (Eshelby, 1957, 1959)
can be applied. Direct interactions between reinforcements are rarely taken into consideration. Most
analytical approaches are directed toward random distribution of particles. Homogenized constitutive
equations of composites are often derived in an explicit way so that they can be directly implemented
for structural analysis.

On the other hand, most of computational micromechanics approaches are based on the periodic unit
cell models, which have the advantage of high accuracy of solutions by considering realistic geometry of
reinforcements and local interactions among reinforcements with the expense of intensive computational
cost. Periodic boundary conditions introduce a periodicity in the reinforcement distribution that may
not exist in actual composites. In addition, numerical models do not result in explicit forms for the
overall constitutive relations, making them difficult to implement in stress analyses at the macroscopic
level.

Recognizing each approach has its own advantages and disadvantages, the present paper seeks to apply
an analytical micromechanics framework with prescribed thermal eigenstrains to tackle the effect of pro-
cessing-induced residual stresses on the effective elastoplastic behavior of PRMMCs. Although previous
investigations mentioned above have provided a significant understanding of the role of thermal residual
stresses on the effective constitutive relations of composites, the results obtained are not quite consistent
with each other and not systematic. Therefore, the present paper will perform a parametric study of how
intrinsically residual stresses affect the overall uniaxial tensile/compressional yield strengths, multiaxial
yield surfaces, and strain hardenings of unidirectionally aligned PRMMCs. Based on the very recent work
of Ju and Sun (2001) and Sun and Ju (2001), micromechanical stress and strain fields are re-derived due to
the combination of the prescribed eigenstrains (due to thermal mismatch of CTEs) and the equivalent
eigenstrains (due to applied external loading). The ensemble-averaged homogenization procedure is utilized
to derive the effective yield function of composites under general three-dimensional loading conditions. It is
shown that the residual stresses result in a combined kinematic hardening and isotropic hardening effect.
Comparisons between the analytical predictions and experimental data are performed to illustrate the
capability of the proposed model.



H.T. Liu, L.Z. Sun | International Journal of Solids and Structures 41 (2004) 2189-2203 2191

2. Micromechanical framework and homogenization

Let us consider a particle-reinforced composite with a linearly elastic matrix (phase 0) and randomly
dispersed yet unidirectionally aligned, linearly elastic spheroidal particles (phase 1) as shown in Fig. 1. Both
the particles and the matrix are isotropic with the elastic stiffness tensors denoted by C' and C°, and the
CTEs designated as o and o, respectively. The volume fraction of the particles is ¢. The composite is
subjected to a uniform temperature change A7, and after that, it is further subjected to a far-field
mechanical stress ¢, (or the far-field strain g).

From concept of eigenstrains (Mura, 1987), the effects of the temperature change can be simulated by a
prescribed uniform eigenstrain €* inside the particles that

& = (o — 0)ATS; (1)

Here, 6;; is the second-rank identity tensor (Kronecker delta). If the temperature change is significant
enough, the prescribed eigenstrain will cause the matrix yield and produce plastic flow. The overall elas-
toplastic behavior of PRMMCs depends on the collective responses of local stress field through the
homogenization averaging procedure. For simplicity, the von Mises yield criterion with an isotropic
hardening law is adopted for the matrix material.

To obtain the effective elastoplastic constitutive relations of PRMMCs, homogenization procedure is
usually performed within a mesoscopic RVE (Nemat-Nasser and Hori, 1999). The microscopic stress ¢(x)
at a material point x is assumed to satisfy the von Mises yield criterion:

F(o,e?) =+/6:13: 0 —K(e?) <0 (2)

where eP and K(eP) are the equivalent plastic strain and the isotropic hardening function of the matrix,
respectively. Moreover, Iy denotes the deviatoric part of the fourth-rank identity tensor I. The notation “:”
indicates the tensor contraction between a fourth-rank tensor and a second-rank tensor.

The square of the “current stress norm” H(x|g)=o(x|g) : Iy : 6(x|g) at a local point x is defined to
contribute to the initial yield criterion of composites for a given particle configuration g (assembly) (Ju

and Sun, 2001). Furthermore, (H), (x) is designated as the ensemble average of H(x|g) over all possible

AX1
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Fig. 1. Schematic diagram of (a) the microstructure of PRMMCs and (b) geometry of a spheroidal particle.
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realizations for a matrix point x. By neglecting the direct interactions among neighboring particles, (H),, (x)
can be expressed as

N !/ !
) =1 [ o ()

if the aligned particles are uniformly distributed in the matrix. In above equation, H* = o : I : 6, is the
square of the applied far-field stress norm and Z(x) is the exclusion zone of x for the center location x’ of a
particle in the probability space, which is identical to the shape and size of a spheroidal particle. Fur-
thermore, N and ¥ are the number of particles in and the volume of the RVE, respectively.

At any point x in the matrix, the local stress ¢(x) is the superposition of the far-field stress ¢, and the
disturbed stress o’(x):

6(x) = 6 + ¢'(x) (4)
where the disturbed stress ¢’(x) is expressed as
o(x)=C":G(x—x): & (5)

in which G is the exterior-point Eshelby’s tensor (Ju and Sun, 1999) and & is the total eigenstrain that
includes the prescribed thermal eigenstrain € and the equivalent eigenstrain induced by the far-field
stresses:

£ =(S+A) " :(B:g —¢") (6)

It is further noted that S is (interior-point) Eshelby tensor and A and B are the elastic mismatch fourth-rank
tensors which render the following forms:

A=(C'-C)'.C (7)

B=(C'-Cc")".C! (8)

(T3]

where the notation indicates the tensor contraction between two fourth-rank tensors.
From Egs. (3)—(8), after a series of lengthy but straightforward derivations, the ensemble-averaged (H)
can be shown as

(H) (x)=0p:Ig:060+ (0o —L:€):T:(6p—L:&")+2(L:€"):U:(6p—L:g") 9)

where the fourth-rank tensors T, L and U are defined as
T = 7}(1?51',‘51(1 + T]<JZ)(5ik5jl + 040 ) (10)
L=C"B (11)

U=(I;-C) -M-[C"-(A+8S)]" (12)
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with
7 _ 6(35v5 — T0vg + 36) A + 14(50v3 — 59vo + 8)(4; + Ax) — 4(175v3 — 343vy + 103) ¢
x 4725(1 — v0)2 BBk
2(25vo — 2)(1 = 2v) ¢(I'r+ ') 2(25vo — 23)(1 — 2vg) ¢(Ipdx + ke 4r)
225(1 — )’ By Bgk 225(1 — vy)’ By Bkk
2(1 - 2"0)2 OI'; Ty
3(1 —v)* BuBxk
7o _ 4(35v3 — T0vg + 36) A, — (1753 — 266vg + 75)(4; + Ay) + 4(175v3 — 238v, +82) ¢
o 3150(1 — vp)? BuBy
(13)
MI(I) _ MI(Jz) _ P33+ T4y — 5(4; + 4)) (14)

20(1 — V())

Here, vy is the Possion’s ratio of the matrix. Other parameters in the above equations are given in Appendix
A.

Furthermore, from Ju and Chen (1994), the corresponding macroscopic (overall) stresses ¢ produced by
the far-field stress 6, and the prescribed eigenstrain €* can be easily obtained as

6=P:0)+Q:¢ (15)
where the fourth-rank tensor P and Q read

P=C"-[I+¢I-S)-(A+S)']-(C")"! (16)

Q=C"-¢(1-S)-(A+S)"-B (17)

The combination of Egs. (9) and (15) provides the expression of (H),, in terms of the overall stress tensor
¢ and the prescribed eigenstrain tensor €.

3. Effective constitutive modeling of composites

With small deformation assumption, the macroscopic strain & can be directly decomposed into elastic
part € and plastic part €. The thermal residual stresses do not affect the elastic properties of composites.
Therefore, Ju and Sun’s (2001) effective elastic stiffness tensor C for aligned spheroidal PRMMCs is still
available for the composites with thermal residual stresses and is expressed as

C=C"-{I-¢[-A—(1-9)S""} (18)

which shows the transversely isotropic behavior.
The overall plastic responses of the composites depend on the elastoplastic properties of the matrix.
Isotropic strain-hardening law of the matrix has been adopted as

K(&) = o, + h(e?)' (19)

where o,, i and ¢q are the yield stress and the strain-hardening parameters of the matrix, respectively. The
overall plastic yield function of the composites is derived by applying the ensemble- and volume-average
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procedures to the micromechanical yield function of the matrix Eq. (2). From the homogenization process
in the previous section, the overall yield function of the composites can be expressed as

F=(1-¢)\/(t), — /o, + h@)] (20)

Here, e? is the overall equivalent plastic strain of the composites, defined as e? = /2gP : g /3. Corre-
spondingly, the overall yield function is further applied to define the plastic associate flow rule between the
effective plastic strain tensor and overall stress tensor of the composites:

. . OF

f=1— 21

& =l5c (21)
where / is the plastic consistency parameter, satisfying the Kuhn—Tucker conditions (Lubliner, 1990)

i>0, F<0, JF=0, JF=0 (22)
Therefore, the complete plastic deformation framework is established via Egs. (20) and (21).

4. Effects of thermal residual stresses

Due to the presence of the thermal residual stresses in PRMMC s, the overall elastoplastic behavior may
exhibit differently from that without residual stresses in the composites. Based on the framework estab-
lished above, the effect of thermal residual stresses on the overall elastoplastic deformation of PRMMC:s is
discussed in this section.

4.1. Cooling process

In the absence of external stresses (6, = 0), (H),, from Eq. (9) is simplified as

(H) (x)=¢ :U:¢" (23)

m

where
U=L - (T-2U)- L (24)

and the prescribed thermal eigenstrain &* is defined in Eq. (1). It is noted that, if the temperature drop is
large enough, the thermal residual stresses may cause the composites yield. The critical temperature drop
AT* that produces the composite initial yielding can be calculated by applying F = 0 in Eq. (20) with & = 0.
The influence of the cooling process on the following mechanical responses of PRMMCs under external
loading is characterized by the pre-stored thermal residual stresses in the composites. Corresponding to the
given temperature drop and the prescribed eigenstrains €, the macroscopic averaged stresses ¢ are ex-
pressed as Eq. (15) without external loading (6, = 0). To account for the change of matrix constraints to
particles due to plastic flow, the secant moduli method (Berveiller and Zaoui, 1979; Tandon and Weng,
1998) is applied so that the Young’s modulus £5 and Poisson’s ratio v§ of the matrix are modified to become
dependent on the equivalent plastic strain as
1

I, _@
Eo T oy (@)

1 1 ES
S (2o ) 26
Yo 2 (2 v>E0 ( )

The corresponding secant elastic stiffness tensor of the matrix is represented by (CO)S. Therefore, the
thermal residual stresses 6T caused by the temperature drop can be calculated by

ES = (25)
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T =Q%:¢ (27)
where Q% has the same expression as Q with the condition that C° be replaced by (CO)S.

In what follows, unless noted otherwise during subsequent numerical simulations, the matrix material is
taken as an aluminum alloy with the Young’s modulus £, = 73 GPa, Poisson’s ratio v,, = 0.33, the uniaxial
yield strength o, = 170 MPa, the strain hardening parameters # = 577 MPa and g = 0.37, and the CTE
a0y =21.5x 107¢ °C. For the elastic reinforcement material, the Young’s modulus E, =480 GPa, the
Poisson’s ratio v, = 0.17, and the CTE a; = 3.8 x 107° °C (similar to the thermal-elastic properties of the

E,.=73GPa, v,=0.33, E,=480GPa,v,=0.17
6,=170MPa, h=577MPa, q=0.37, o, = 3.8x10° °C™, o, = 21.5x10° °C*

500 T T LI TR T T T T T T T
i ", 1 —0=15%
0 (I - - ¢=10%
400 ., \ . - - 0=5% T
1
o
3009 .
1
GG nl
o~ 2004 |
5 |
) y
100 '/
W,
0 T T T T

Fig. 2. The effect of aspect ratio on the critical temperature drop.

E,=73GPa, v,=0.33, E,=480GPa,v,=0.17, AT = -500 °C
6,=170MPa, h=577MPa, 4=0.37, o, = 3.8x10° °C”, o, = 21.5x10° °C"”

0.0—————+—+—+——————————————————

< 6=15%

-1.6 -
o7
1.8 - i
~ ° zz( O )
20¢——/——™——F—7+—F——FF 77—
1 2 3 4 5

Fig. 3. Dependence of overall thermal residual stresses on the aspect ratio and volume fraction of particles.
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SiC particles). Fig. 2 shows the critical temperature drop to produce initial yield of PRMMCs. The critical
temperature drop increases rapidly when the particle aspect ratio o approaches to 1 (spherical particles),
which indicates that the plastic flow is very difficult to occur in spherical PRMMC:s. It is due to the fact that
the local matrix material of spherical PRMMC s, under the pressure-independent von Mises yield criterion,
is subjected to the purely hydrostatic stresses. Correspondingly, when the reinforcement concentration
becomes less, it is even more difficult to yield. If the temperature drop is fixed at 500 °C (typical temperature
for composites fabrication processing), the overall stress components acting on the composites are illus-
trated in Fig. 3. It is shown that all three normal stresses are compressive. The magnitude of each stress
component increases with more particle concentration while the dependence of overall stresses on particle
geometry is not monotonic.

4.2. Far-field mechanical loading

With the subsequent far-field mechanical loading 6y, (H),, inside the overall yield function Eq. (20) can
be rewritten to explicitly take into account the overall thermal residual stresses 6 :

(H)n(x)=(6+6"):T:(6+6") (28)
where

T=P' (T+1) P! (29)
Therefore, the overall yield function of PRMMCs becomes

F=(1-¢)\/®+6"):T:(6+8") — /2o, +h(e) (30)

The effect of thermal residual stresses on the overall uniaxial yield strength of PRMMC:s is demonstrated
in Figs. 4 and 5. Based on the fact of compressive residual stresses (Fig. 3), the tensile yield strength of
PRMMC:s is normally greater than the compressive yield strength, and both strengths are less than that
without thermal residual stresses, regardless of aspect ratio and volume fraction of particles. Furthermore,

¢0=15%, E, =73GPa, v,,=0.33, E,=480GPa,v,=0.17, AT = -500 °C
0,=170MPa, h=577MPa, =037, a,= 3.8x10°°C", o, = 21.5x10° °’C”
16 L B L L R B AL B R R R B R

1.4+
1.2+
1.0+

. .

16" 0.8

0.6

0.4 E
1 | —— Without thermal effect
0.2 |- - - Tensile yield stress E
{|— — Compressive yield stress
0.0 AL B R B AL I R R

1 2 3 4 5
o

Fig. 4. The effect of aspect ratio on the yield stresses of the uniaxial loading.
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=3, E,=73GPa, v,=0.33, E,=480GPa,,=0.17, AT = -500 °C
6,=170MPa, h=577MPa, q=0.37, o, = 3.8x10° °C", o, = 21.5x10° °C*
15 ——

1.4+

1.3

1.2

5o,

1.14

1.0

—— Without thermal effect
0.94]| - - - Tensile yield stress B
— — Compressive yield stress

0.8 - -
0.05 0.10 0.15
o

Fig. 5. The effect of particle volume fraction on the yield stresses of the uniaxial loading.

=3, 0=15%, E,=73GPa, v,=0.33, E =480GPa,,=0.17, AT = -500 °C

6,=170MPa, h=577MPa, 9=0.37, 0,= 3.8x10° °C*, o, = 21.5x10° °C"*
— T T T T — T T T

154 B

1.0

0.54

8 0.0

-0.54

-1.0

~ - _ - — | = — Without thermal effect |]|

-1.54 With thermal effect

L I e e e
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 15 2.0

5,/c,

Fig. 6. The kinematic and isotropic hardening of the initial yield surface.

Fig. 4 illustrates that, with a large aspect ratio, the compressive strength could be zero, indicating that there
is no elastic region for further compression. On the other hand, when particles are spherical, both tensile
and compressive strengths are not affected by the internal thermal stresses. As shown in Fig. 5, the strength
difference becomes more significant when the volume fraction of particles increases.

Thermal effects on the yield surfaces of PRMMCs under biaxial loading are investigated in Figs. 6-8. It
is observed in Fig. 6 that the overall yield surface is a combination of isotropic and kinematic hardening
responses under the consideration of thermal residual stresses whereas the yield surface without residual
stresses shows isotropic hardening only. Fig. 7 further shows the effect of aspect ratio on the yield surfaces.
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6=15%, E,=73GPa, v,=0.33, E,=480GPa,y,=0.17, AT = -500 °C
6,170MPa, h=577MPa, q=0.37, o, = 3.8x10° °C”, a,=21.5x10° °C*
2.0 T T T T T T T T T T T T T

(@) <_Su/(sy

0=15%, E_=73GPa, v,=0.33, E =480GPa,y,=0.17, AT = -500 °C
6,=170MPa, h=577MPa, g=0.37, a,= 3.8x10° °C*, 0,,= 21.5x10° °C*
2.0 T T T T T T T T T T T T

1.5 4

45 10 05 00 05 10 15 20
(b) Gylo,

Fig. 7. The effect of aspect ratio on the initial yield surface (a) « > 1 and (b) o < 1.

When reinforcing spheroidal particles become more prolate (« increases from 1 to 5), the yield surfaces
shrink and move toward the direction of particle alignment. On the other hand, when spheroidal particles
become more (o decreases from 1 to 0.2), the yield surfaces shrink and move to the transverse direction of
particle alignment where G,, is applied. The reason for this phenomenon is that aspect ratios of rein-
forcement cause the composite stiffness anisotropic, which further affects the thermal stress distribution in
PRMMC:s. The effect of volume fraction of particles on the overall yield surface is illustrated in Fig. 8. With
the increase of volume fraction, the yield surface exhibits more kinematic and moves toward the tensile
loading directions.
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=3, E_=73GPa, v,=0.33, E,=480GPa,V,=0.17, AT = -500 °C
6,=170MPa, h=577MPa, q=0.37, 0, = 3.8x10° °C”, a,= 21.5x10° °C”

— —
1.5 4
1.0 4
0.5 i

s
=, 00
10"
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G,,/o,

Fig. 8. The effect of volume fraction on the initial yield surface.

To investigate the influence of thermal residual stresses on the subsequent plastic flow of PRMMCs,
uniaxial loading tests following the 500 °C temperature drop process have been considered; namely

61 =0>0, otherg;=0 (31)

Fig. 9 shows the overall elastoplastic stress—strain relations of PRMMCs under a tension—compression
loading process. With the consideration of thermal residual stresses, both the tensile and compressive
plastic flow stresses become less than those without thermal effect. However, the overall stress—strain curves

9=15%, 0=3, E,=73GPa, v,=0.33, E =480GPa,v,=0.17, AT = -500 °C

6,=170MPa, h=577MPa, 4=0.37, o,= 3.8x10° °C”, 0,,= 21.5x10° °C"*
0.6 T T T

0.4

0.2+

-0.24 —
!

7
-

0.4 - =
- —— With thermal residual stress

1T Without thermal residual stress
0.6 —¥F——7—7
-0.020 -0.015 -0.010 -0.005 0.000 0.005 0.010 0.015 0.020

&

Fig. 9. Uniaxial loading: tension-compression curves.
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o =5, E =60GPa, v,,=0.3, Ep:450GPa, Vp:0.2, AT = -500°C
6,=290MPa, h=450MPa, =0.4, ¢,= 3.8x10° °C”, a,p= 21.5x10° °C”
0.8 T T T T T T T T T T T T T T

0.7+ 4

0.6 -

0.5+ - = -
e 0-4'- . b

0.3 ] 4

0.2+ 4
®  Expreimental data (13.3% SiCw/Al)

0.1 — — Prediction without thermal effect g
Prediction with thermal effect

oofboo—r+— ¢ —
0000 0002 0004 0006 0008 0010 0012 0014

€

Fig. 10. Comparisons of uniaxial stress—strain responses with experimental data (Christman et al., 1989) for SiC,,/Al composites.

for tension and compression are not symmetric. Thermal stresses have a more significant effect on the
compression part. Fig. 10 shows the comparison between the present predictions and the experimental data
reported by Christman et al. (1989). In their experiments, uniaxial elastoplastic stress—strain curves were
recorded for the 2124 aluminum alloy reinforced with 13.2% SiC whiskers. It is shown that the thermal
residual stresses cause the overall elastoplastic stress—strain curve lower than that without thermal effects,
which turns out the predication closer to the experimental data and therefore improves the accuracy of
predications compared with the model without considering the thermal residual stresses.

5. Conclusions

A micromechanics-based elastoplastic model is developed to consider how processing-induced thermal
residual stresses affect the overall mechanical behavior of PRMMCs. Micromechanical stress and strain
fields are calculated due to the combination of applied external loads and prescribed thermal mismatch
eigenstrains. Ensemble-volume averaging procedures are then employed to derive the effective yield func-
tion of the composites. The proposed effective elastoplastic constitutive model is suitable for general 3-D
loading conditions. It is shown that the fabrication cooling process may cause plastic flow of the com-
posites. Due to the presence of thermal residual stresses, the overall yield surfaces of the composites exhibit
a combination of kinematic and isotropic plastic hardening even though the matrix material is assumed to
be isotropic hardening only. Comparisons between the analytical predictions and experimental data are
performed to illustrate the capability of the proposed model.
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Appendix A

Parameters in Eqgs. (13) and (14) are expressed as

C 3 =t (o) 1

AI_W’ A2:A3:§(3—A1)

A 502 + ot — 30t f(0?)]

1 21 - a4)2 Al

Ao = Ao = e = A = 1504[=3 + (1 + 20*) £ (o2)] '
12 =4y = 43 31 4(17064)2

1
Ay = A3 = A3 = A33 = §(15 — 34y —44,,)
with a = a;/a, as the aspect ratio of the spheroidal particles (Fig. 1(b)) and
cos la 1<l
) a1 =02’
O S (A2)
—_—, a>1
o2 — 1
Further,

Bu = 2(V1J +NIJ) (A3)
I'n Un + 20 + My + 2Ny Usy + Mo,y Usi + M3, N Un + My,
Iy ;= U + M, Uz + 2Vay + My + 2Ny, Uy + M3, Unp+Mp
I'n Uiz + M3 Uss + Mo Usz + 2V33 + M3z + 2N33 U +Mp

(I=1,2,3) (A4)
with
2 4
Ull = |:4V0 + m]h(fl) + 4V0 +m
202 + 1 202
U12 = U13 = |:4V() — ao; — 1 :|]’l(0() +4V0 70(2 Oi 1
202 + 1 202 (A-3)
U21 = U31 = |:—2V()— 0(2—1 :|h(a)—az_1
402 — 1 o
Up=Us=Usp =Us = [—2"0 "‘4(0(2_1)]}’(0‘) +m
402 — 2 1202 — 8
= |- 2 T ) — Ay T
Vi |: 4VO+O(2—1:| (O() VO+3(O(2—1)
o +2 2
V12=V§1=V13=V31:[—VO—OCQ_l}h(a)_ZVO_az_l (A.6)

402 -7

Voo =Vo3 = V3 = V33 = [2V0—m} (“)+m
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My — Aot = 2to
(' = ) 2(pt = ) +3(2' = 2] (A7)
. .

u

N =2 =)
and

W[d(l —0(2)1/2—C0571 0(], o< 1
ha) = - (A.8)

(o2 O(1)3/2 [cosh™ & — (o — 1)1/2], o> 1

o2 —

It is noted that (1°, ) and (', u') are the Lame constants of the matrix and the particles, respectively.
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