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Abstract

During the fabrication processes of particle-reinforced metal-matrix composites, thermal residual stresses are nor-

mally developed due to the difference of the coefficients of thermal expansion between the matrix and the reinforcement.

The effect of thermal residual stresses is analytically investigated on the elastoplastic behavior of the composites.

Micromechanical stress and strain fields are calculated due to the combination of applied external loads and prescribed

thermal mismatch eigenstrains. Ensemble-volume averaging procedures are then employed to derive the effective yield

function of the composites. It is shown that the residual stresses result in a combined kinematic hardening and isotropic

hardening effect. Comparisons between the analytical predictions and experimental data are performed to illustrate the

capability of the proposed model.
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1. Introduction

Because of the improved stiffness and strength with lightweight compared with conventional metallic

alloys, metal-matrix composites (MMCs) have the great potential to be applied in the aerospace, defense,

and automotive industries. The mechanical properties of MMCs generally reflect the combination of those

of the matrices and the reinforcements. Reinforcements may be continuous in the form of long fibers or

discontinuous in the form of particulates, short fibers or whiskers. Particle-reinforced MMCs (PRMMCs)

are less expensive to fabricate. They can be shaped by standard metallurgical processes such as forging,

rolling, and extrusion.
Internal residual stresses in composites are the ones which remain stationary and at equilibrium with

their surroundings. The mechanical performance of materials may be significantly affected. On the other
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hand, the existence of internal residual stresses may be beneficial if designed deliberately (Withers and

Bhadeshia, 2001a,b). Therefore, it is important to quantitatively understand how residual stresses influence

the mechanical responses of PRMMCs under external loading. During the fabrication and subsequent heat

treatment processes, PRMMCs initially behave in a stress-free state at the solution treatment temperature
and then develop significant thermal residual stresses upon cooling to the room temperature. This is due to

the difference of coefficient of thermal expansion (CTE) between the matrix (e.g., CTE of Al:

a0 ¼ 21:5� 10�6/�C) and the reinforcement (e.g., CTE of SiC: a1 ¼ 3:8� 10�6/�C). Since the CTE of the

metallic matrix is greater than that of the ceramic particles, the matrix shrinks tight around the particles,

resulting in the internal tensile stresses in the matrix and compressive stresses in the particles. The local

plastic deformation may occur if the residual stresses exceed the yield strength of the matrix during the

cooling process.

Various models have been developed to tackle the thermal residual stresses and their effect on the
overall (effective) mechanical performance of unidirectionally aligned PRMMCs, either analytically

(Arsenault and Taya, 1987; Withers et al., 1989; Dunn and Taya, 1994; Ramakrishnan, 1996; Hu and

Weng, 1998; Jiang et al., 1998) or computationally (Povirk et al., 1991; Levy and Papazian, 1991; Zahl

and McMeeking, 1991; Shi et al., 1992; Davis and Allison, 1993; Dutta et al., 1993; Ho and Saigal,

1994; Jain et al., 1994; Meijer et al., 2000; Teixeira-Dias and Menezes, 2001; Bruzzi et al., 2001). It is

noted that both analytical and numerical treatments have their advantages and disadvantages (Dunn

and Ledbetter, 1997). In general, analytical micromechanical approaches consider the analysis of a

representative volume element (RVE) in which the reinforcement geometry is idealized for the ease of
mathematical treatment. For example, reinforcing particles, short fibers, or whiskers are usually

modeled by spheroids so that the celebrated Eshelby�s equivalent inclusion theory (Eshelby, 1957, 1959)

can be applied. Direct interactions between reinforcements are rarely taken into consideration. Most

analytical approaches are directed toward random distribution of particles. Homogenized constitutive

equations of composites are often derived in an explicit way so that they can be directly implemented

for structural analysis.

On the other hand, most of computational micromechanics approaches are based on the periodic unit

cell models, which have the advantage of high accuracy of solutions by considering realistic geometry of
reinforcements and local interactions among reinforcements with the expense of intensive computational

cost. Periodic boundary conditions introduce a periodicity in the reinforcement distribution that may

not exist in actual composites. In addition, numerical models do not result in explicit forms for the

overall constitutive relations, making them difficult to implement in stress analyses at the macroscopic

level.

Recognizing each approach has its own advantages and disadvantages, the present paper seeks to apply

an analytical micromechanics framework with prescribed thermal eigenstrains to tackle the effect of pro-

cessing-induced residual stresses on the effective elastoplastic behavior of PRMMCs. Although previous
investigations mentioned above have provided a significant understanding of the role of thermal residual

stresses on the effective constitutive relations of composites, the results obtained are not quite consistent

with each other and not systematic. Therefore, the present paper will perform a parametric study of how

intrinsically residual stresses affect the overall uniaxial tensile/compressional yield strengths, multiaxial

yield surfaces, and strain hardenings of unidirectionally aligned PRMMCs. Based on the very recent work

of Ju and Sun (2001) and Sun and Ju (2001), micromechanical stress and strain fields are re-derived due to

the combination of the prescribed eigenstrains (due to thermal mismatch of CTEs) and the equivalent

eigenstrains (due to applied external loading). The ensemble-averaged homogenization procedure is utilized
to derive the effective yield function of composites under general three-dimensional loading conditions. It is

shown that the residual stresses result in a combined kinematic hardening and isotropic hardening effect.

Comparisons between the analytical predictions and experimental data are performed to illustrate the

capability of the proposed model.
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2. Micromechanical framework and homogenization

Let us consider a particle-reinforced composite with a linearly elastic matrix (phase 0) and randomly

dispersed yet unidirectionally aligned, linearly elastic spheroidal particles (phase 1) as shown in Fig. 1. Both
the particles and the matrix are isotropic with the elastic stiffness tensors denoted by C1 and C0, and the

CTEs designated as a1 and a0, respectively. The volume fraction of the particles is /. The composite is

subjected to a uniform temperature change DT , and after that, it is further subjected to a far-field

mechanical stress r0 (or the far-field strain e0).
From concept of eigenstrains (Mura, 1987), the effects of the temperature change can be simulated by a

prescribed uniform eigenstrain e� inside the particles that
e�ij ¼ ða1 � a0ÞDTdij ð1Þ
Here, dij is the second-rank identity tensor (Kronecker delta). If the temperature change is significant

enough, the prescribed eigenstrain will cause the matrix yield and produce plastic flow. The overall elas-

toplastic behavior of PRMMCs depends on the collective responses of local stress field through the

homogenization averaging procedure. For simplicity, the von Mises yield criterion with an isotropic

hardening law is adopted for the matrix material.
To obtain the effective elastoplastic constitutive relations of PRMMCs, homogenization procedure is

usually performed within a mesoscopic RVE (Nemat-Nasser and Hori, 1999). The microscopic stress rðxÞ
at a material point x is assumed to satisfy the von Mises yield criterion:
F ðr; epÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r : Id : r

p
� KðepÞ6 0 ð2Þ
where ep and KðepÞ are the equivalent plastic strain and the isotropic hardening function of the matrix,

respectively. Moreover, Id denotes the deviatoric part of the fourth-rank identity tensor I. The notation ‘‘:’’
indicates the tensor contraction between a fourth-rank tensor and a second-rank tensor.

The square of the ‘‘current stress norm’’ HðxjgÞ,rðxjgÞ : Id : rðxjgÞ at a local point x is defined to

contribute to the initial yield criterion of composites for a given particle configuration g (assembly) (Ju

and Sun, 2001). Furthermore, hHimðxÞ is designated as the ensemble average of HðxjgÞ over all possible
(a) (b)
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Fig. 1. Schematic diagram of (a) the microstructure of PRMMCs and (b) geometry of a spheroidal particle.
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realizations for a matrix point x. By neglecting the direct interactions among neighboring particles, hHimðxÞ
can be expressed as
hHimðxÞ ¼ H 0 þ N
V

Z
x0 62NðxÞ

½Hðxjx0Þ � H 0�dx0 ð3Þ
if the aligned particles are uniformly distributed in the matrix. In above equation, H 0 ¼ r0 : Id : r0 is the

square of the applied far-field stress norm and NðxÞ is the exclusion zone of x for the center location x0 of a
particle in the probability space, which is identical to the shape and size of a spheroidal particle. Fur-

thermore, N and V are the number of particles in and the volume of the RVE, respectively.

At any point x in the matrix, the local stress rðxÞ is the superposition of the far-field stress r0 and the

disturbed stress r0ðxÞ:
rðxÞ ¼ r0 þ r0ðxÞ ð4Þ
where the disturbed stress r0ðxÞ is expressed as
r0ðxÞ ¼ C0 : Gðx� x1Þ : e�� ð5Þ
in which G is the exterior-point Eshelby�s tensor (Ju and Sun, 1999) and e�� is the total eigenstrain that

includes the prescribed thermal eigenstrain e� and the equivalent eigenstrain induced by the far-field

stresses:
e�� ¼ ðSþ AÞ�1 : ðB : e� � e0Þ ð6Þ
It is further noted that S is (interior-point) Eshelby tensor and A and B are the elastic mismatch fourth-rank

tensors which render the following forms:
A ¼ ðC1 � C0Þ�1 � C0 ð7Þ

B ¼ ðC1 � C0Þ�1 � C1 ð8Þ

where the notation ‘‘Æ’’ indicates the tensor contraction between two fourth-rank tensors.

From Eqs. (3)–(8), after a series of lengthy but straightforward derivations, the ensemble-averaged hHim
can be shown as
hHimðxÞ ¼ r0 : Id : r0 þ ðr0 � L : e�Þ : T : ðr0 � L : e�Þ þ 2ðL : e�Þ : U : ðr0 � L : e�Þ ð9Þ
where the fourth-rank tensors T, L and U are defined as
Tijkl ¼ T ð1Þ
IK dijdkl þ T ð2Þ

IJ ðdikdjl þ dildjkÞ ð10Þ

L ¼ C0 � B ð11Þ

U ¼ ðId � C0Þ �M � ½C0 � ðAþ SÞ��1 ð12Þ
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with
T ð1Þ
IK ¼ 6ð35m20 � 70m0 þ 36ÞDIK þ 14ð50m20 � 59m0 þ 8ÞðDI þ DKÞ � 4ð175m20 � 343m0 þ 103Þ

4725ð1� m0Þ2
/

BIIBKK

þ 2ð25m0 � 2Þð1� 2m0Þ
225ð1� m0Þ2

/ðCII þ CKKÞ
BIIBKK

þ 2ð25m0 � 23Þð1� 2m0Þ
225ð1� m0Þ2

/ðCIIDK þ CKKDIÞ
BIIBKK

þ 2ð1� 2m0Þ2

3ð1� m0Þ2
/CIICKK

BIIBKK

T ð2Þ
IJ ¼ 4ð35m20 � 70m0 þ 36ÞDIJ � ð175m20 � 266m0 þ 75ÞðDI þ DJÞ þ 4ð175m20 � 238m0 þ 82Þ

3150ð1� m0Þ2
/

BIIBJJ

ð13Þ
M ð1Þ
IJ ¼ M ð2Þ

IJ ¼ /ð3þ 7DIJ � 5ðDI þ DJ ÞÞ
20ð1� m0Þ

ð14Þ
Here, m0 is the Possion�s ratio of the matrix. Other parameters in the above equations are given in Appendix

A.

Furthermore, from Ju and Chen (1994), the corresponding macroscopic (overall) stresses �r produced by

the far-field stress r0 and the prescribed eigenstrain e� can be easily obtained as
�r ¼ P : r0 þQ : e� ð15Þ
where the fourth-rank tensor P and Q read
P ¼ C0 � ½Iþ /ðI� SÞ � ðAþ SÞ�1� � ðC0Þ�1 ð16Þ
Q ¼ C0 � /ðI� SÞ � ðAþ SÞ�1 � B ð17Þ
The combination of Eqs. (9) and (15) provides the expression of hHim in terms of the overall stress tensor
�r and the prescribed eigenstrain tensor e�.
3. Effective constitutive modeling of composites

With small deformation assumption, the macroscopic strain �e can be directly decomposed into elastic

part �ee and plastic part �ep. The thermal residual stresses do not affect the elastic properties of composites.

Therefore, Ju and Sun�s (2001) effective elastic stiffness tensor C for aligned spheroidal PRMMCs is still
available for the composites with thermal residual stresses and is expressed as
C ¼ C0 � fI� /½�A� ð1� /ÞS��1g ð18Þ
which shows the transversely isotropic behavior.

The overall plastic responses of the composites depend on the elastoplastic properties of the matrix.
Isotropic strain-hardening law of the matrix has been adopted as
KðepÞ ¼
ffiffi
2
3

q
½ry þ hðepÞq� ð19Þ
where ry , h and q are the yield stress and the strain-hardening parameters of the matrix, respectively. The

overall plastic yield function of the composites is derived by applying the ensemble- and volume-average
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procedures to the micromechanical yield function of the matrix Eq. (2). From the homogenization process

in the previous section, the overall yield function of the composites can be expressed as
F ¼ ð1� /Þ
ffiffiffiffiffiffiffiffiffiffiffi
hHim

q
�

ffiffi
2
3

q
½ry þ hð�epÞq� ð20Þ
Here, �ep is the overall equivalent plastic strain of the composites, defined as �ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ep : �ep=3

p
. Corre-

spondingly, the overall yield function is further applied to define the plastic associate flow rule between the

effective plastic strain tensor and overall stress tensor of the composites:
_�ep ¼ _k
oF
o�r

ð21Þ
where _k is the plastic consistency parameter, satisfying the Kuhn–Tucker conditions (Lubliner, 1990)
_kP 0; F 6 0; _kF ¼ 0; _k _F ¼ 0 ð22Þ

Therefore, the complete plastic deformation framework is established via Eqs. (20) and (21).
4. Effects of thermal residual stresses

Due to the presence of the thermal residual stresses in PRMMCs, the overall elastoplastic behavior may

exhibit differently from that without residual stresses in the composites. Based on the framework estab-

lished above, the effect of thermal residual stresses on the overall elastoplastic deformation of PRMMCs is

discussed in this section.

4.1. Cooling process

In the absence of external stresses (r0 ¼ 0), hHim from Eq. (9) is simplified as
hHimðxÞ ¼ e� : U : e� ð23Þ

where
U ¼ L � ðT� 2UÞ � L ð24Þ

and the prescribed thermal eigenstrain e� is defined in Eq. (1). It is noted that, if the temperature drop is
large enough, the thermal residual stresses may cause the composites yield. The critical temperature drop

DT c that produces the composite initial yielding can be calculated by applying F ¼ 0 in Eq. (20) with �ep ¼ 0.

The influence of the cooling process on the following mechanical responses of PRMMCs under external

loading is characterized by the pre-stored thermal residual stresses in the composites. Corresponding to the

given temperature drop and the prescribed eigenstrains e�, the macroscopic averaged stresses �r are ex-

pressed as Eq. (15) without external loading (r0 ¼ 0). To account for the change of matrix constraints to

particles due to plastic flow, the secant moduli method (Berveiller and Zaoui, 1979; Tandon and Weng,

1998) is applied so that the Young�s modulus ES
0 and Poisson�s ratio mS0 of the matrix are modified to become

dependent on the equivalent plastic strain as
ES
0 ¼

1
1
E0
þ �ep

ryþhð�epÞq
ð25Þ

mS0 ¼
1

2
� 1

2

�
� m0

�
ES
0

E0

ð26Þ
The corresponding secant elastic stiffness tensor of the matrix is represented by ðC0ÞS. Therefore, the
thermal residual stresses �rT caused by the temperature drop can be calculated by
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�rT ¼ QS : e� ð27Þ
where QS has the same expression as Q with the condition that C0 be replaced by ðC0ÞS.
In what follows, unless noted otherwise during subsequent numerical simulations, the matrix material is

taken as an aluminum alloy with the Young�s modulus Em ¼ 73 GPa, Poisson�s ratio mm ¼ 0:33, the uniaxial
yield strength ry ¼ 170 MPa, the strain hardening parameters h ¼ 577 MPa and q ¼ 0:37, and the CTE

a0 ¼ 21:5� 10�6 �C. For the elastic reinforcement material, the Young�s modulus Ep ¼ 480 GPa, the

Poisson�s ratio mp ¼ 0:17, and the CTE a1 ¼ 3:8� 10�6 �C (similar to the thermal-elastic properties of the
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Fig. 2. The effect of aspect ratio on the critical temperature drop.
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Fig. 3. Dependence of overall thermal residual stresses on the aspect ratio and volume fraction of particles.
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SiC particles). Fig. 2 shows the critical temperature drop to produce initial yield of PRMMCs. The critical

temperature drop increases rapidly when the particle aspect ratio a approaches to 1 (spherical particles),

which indicates that the plastic flow is very difficult to occur in spherical PRMMCs. It is due to the fact that

the local matrix material of spherical PRMMCs, under the pressure-independent von Mises yield criterion,
is subjected to the purely hydrostatic stresses. Correspondingly, when the reinforcement concentration

becomes less, it is even more difficult to yield. If the temperature drop is fixed at 500 �C (typical temperature

for composites fabrication processing), the overall stress components acting on the composites are illus-

trated in Fig. 3. It is shown that all three normal stresses are compressive. The magnitude of each stress

component increases with more particle concentration while the dependence of overall stresses on particle

geometry is not monotonic.

4.2. Far-field mechanical loading

With the subsequent far-field mechanical loading r0, hHim inside the overall yield function Eq. (20) can

be rewritten to explicitly take into account the overall thermal residual stresses �rT:
hHimðxÞ ¼ ð�rþ �rTÞ : T : ð�rþ �rTÞ ð28Þ
where
T ¼ P�1 � ðTþ IdÞ � P�1 ð29Þ
Therefore, the overall yield function of PRMMCs becomes
F ¼ ð1� /Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�rþ �rTÞ : T : ð�rþ �rTÞ

q
�

ffiffi
2
3

q
½ry þ hð�epmÞ

q� ð30Þ
The effect of thermal residual stresses on the overall uniaxial yield strength of PRMMCs is demonstrated

in Figs. 4 and 5. Based on the fact of compressive residual stresses (Fig. 3), the tensile yield strength of

PRMMCs is normally greater than the compressive yield strength, and both strengths are less than that

without thermal residual stresses, regardless of aspect ratio and volume fraction of particles. Furthermore,
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Fig. 4. The effect of aspect ratio on the yield stresses of the uniaxial loading.
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Fig. 4 illustrates that, with a large aspect ratio, the compressive strength could be zero, indicating that there
is no elastic region for further compression. On the other hand, when particles are spherical, both tensile

and compressive strengths are not affected by the internal thermal stresses. As shown in Fig. 5, the strength

difference becomes more significant when the volume fraction of particles increases.

Thermal effects on the yield surfaces of PRMMCs under biaxial loading are investigated in Figs. 6–8. It

is observed in Fig. 6 that the overall yield surface is a combination of isotropic and kinematic hardening

responses under the consideration of thermal residual stresses whereas the yield surface without residual

stresses shows isotropic hardening only. Fig. 7 further shows the effect of aspect ratio on the yield surfaces.
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When reinforcing spheroidal particles become more prolate (a increases from 1 to 5), the yield surfaces

shrink and move toward the direction of particle alignment. On the other hand, when spheroidal particles

become more (a decreases from 1 to 0.2), the yield surfaces shrink and move to the transverse direction of

particle alignment where �r22 is applied. The reason for this phenomenon is that aspect ratios of rein-

forcement cause the composite stiffness anisotropic, which further affects the thermal stress distribution in
PRMMCs. The effect of volume fraction of particles on the overall yield surface is illustrated in Fig. 8. With

the increase of volume fraction, the yield surface exhibits more kinematic and moves toward the tensile

loading directions.
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To investigate the influence of thermal residual stresses on the subsequent plastic flow of PRMMCs,

uniaxial loading tests following the 500 �C temperature drop process have been considered; namely
�r11 ¼ r > 0; other �rij ¼ 0 ð31Þ
Fig. 9 shows the overall elastoplastic stress–strain relations of PRMMCs under a tension–compression

loading process. With the consideration of thermal residual stresses, both the tensile and compressive

plastic flow stresses become less than those without thermal effect. However, the overall stress–strain curves
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Fig. 9. Uniaxial loading: tension–compression curves.
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for tension and compression are not symmetric. Thermal stresses have a more significant effect on the
compression part. Fig. 10 shows the comparison between the present predictions and the experimental data

reported by Christman et al. (1989). In their experiments, uniaxial elastoplastic stress–strain curves were

recorded for the 2124 aluminum alloy reinforced with 13.2% SiC whiskers. It is shown that the thermal

residual stresses cause the overall elastoplastic stress–strain curve lower than that without thermal effects,

which turns out the predication closer to the experimental data and therefore improves the accuracy of

predications compared with the model without considering the thermal residual stresses.
5. Conclusions

A micromechanics-based elastoplastic model is developed to consider how processing-induced thermal

residual stresses affect the overall mechanical behavior of PRMMCs. Micromechanical stress and strain
fields are calculated due to the combination of applied external loads and prescribed thermal mismatch

eigenstrains. Ensemble-volume averaging procedures are then employed to derive the effective yield func-

tion of the composites. The proposed effective elastoplastic constitutive model is suitable for general 3-D

loading conditions. It is shown that the fabrication cooling process may cause plastic flow of the com-

posites. Due to the presence of thermal residual stresses, the overall yield surfaces of the composites exhibit

a combination of kinematic and isotropic plastic hardening even though the matrix material is assumed to

be isotropic hardening only. Comparisons between the analytical predictions and experimental data are

performed to illustrate the capability of the proposed model.
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Appendix A

Parameters in Eqs. (13) and (14) are expressed as
D1 ¼
3½1� a4f ða2Þ�

1� a4
; D2 ¼ D3 ¼

1

2
ð3� D1Þ

D11 ¼
5½2þ a4 � 3a4f ða2Þ�

2ð1� a4Þ2

D12 ¼ D21 ¼ D13 ¼ D31 ¼
15a4½�3þ ð1þ 2a4Þf ða2Þ�

4ð1� a4Þ2

D22 ¼ D23 ¼ D32 ¼ D33 ¼
1

8
ð15� 3D11 � 4D12Þ

ðA:1Þ
with a ¼ a1=a2 as the aspect ratio of the spheroidal particles (Fig. 1(b)) and
f ðaÞ ¼

cos�1 a

a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p ; a < 1

cosh�1 a

a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p ; a > 1

8>><
>>:

ðA:2Þ
Further,
BIJ ¼ 2ðVIJ þ NIJ Þ ðA:3Þ

CI1

CI1

CI1

8>><
>>:

9>>=
>>;

¼

U11 þ 2V11 þM11 þ 2N11 U21 þM21 U31 þM31

U12 þM12 U22 þ 2V22 þM22 þ 2N22 U32 þM32

U13 þM13 U23 þM23 U33 þ 2V33 þM33 þ 2N33

2
664

3
775

�1 UI1 þMI1

UI2 þMI2

UI3 þMI3

8>><
>>:

9>>=
>>;

ðI ¼ 1; 2; 3Þ ðA:4Þ
with
U11 ¼ 4m0

�
þ 2

a2 � 1

�
hðaÞ þ 4m0 þ

4

3ða2 � 1Þ

U12 ¼ U13 ¼ 4m0

�
� 2a2 þ 1

a2 � 1

�
hðaÞ þ 4m0 �

2a2

a2 � 1

U21 ¼ U31 ¼
�
� 2m0 �

2a2 þ 1

a2 � 1

�
hðaÞ � 2a2

a2 � 1

U22 ¼ U23 ¼ U32 ¼ U33 ¼
�
� 2m0 þ

4a2 � 1

4ða2 � 1Þ

�
hðaÞ þ a2

2ða2 � 1Þ

ðA:5Þ

V11 ¼
�
� 4m0 þ

4a2 � 2

a2 � 1

�
hðaÞ � 4m0 þ

12a2 � 8

3ða2 � 1Þ

V12 ¼ V21 ¼ V13 ¼ V31 ¼
�
� m0 �

a2 þ 2

a2 � 1

�
hðaÞ � 2m0 �

2

a2 � 1

V22 ¼ V23 ¼ V32 ¼ V33 ¼ 2m0

�
� 4a2 � 7

4ða2 � 1Þ

�
hðaÞ þ a2

2ða2 � 1Þ

ðA:6Þ
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MIJ ¼
k0l1 � k1l0

ðl1 � l0Þ½2ðl1 � l0Þ þ 3ðk1 � k0Þ�

NIJ ¼
l0

2ðl1 � l0Þ

ðA:7Þ
and
hðaÞ ¼

a

ð1� a2Þ3=2
½að1� a2Þ1=2 � cos�1 a�; a < 1

a

ða2 � 1Þ3=2
½cosh�1 a� aða2 � 1Þ1=2�; a > 1

8>><
>>:

ðA:8Þ
It is noted that ðk0; l0Þ and ðk1; l1Þ are the Lame constants of the matrix and the particles, respectively.
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